

FICHE - PROJET DEVELOPPEMENT DURABLE

1.	Catég	gorie du bâtiment/immeuble	: Sélectionnez	un choix			
		Commercial		Industriel			
		Éducatif		Sportif			
		Bureaux		Multi résid	dentiel		
		Hébergement		Autres :			
2.	Nom	du bâtiment ou projet :					
			:			Province:	
3.	Descr	iption du projet :					
		en œuvre du projet :			à		
	1,1150	on source and project	Date de début (1		u	Date de fin (mm/aaaa)	
	% d'o	ccupation lors du dépôt du fo	rmulaire :				
4.	Cand	idat (membre ASHRAE et s	son rôle dans l	e projet) :			
	a.	Nom:					
		Nom		Pré	nom		
		Numéro de membre :					
		Adresse (incluant le pays):					
		Ville	Provinc	ce	Code	e postal	
	b.	Téléphone :		c. Courri	iel :		
		Rôle dans le projet :					
		Signature du membre :					
		C					
5.	Infor	mations complémentaires					
		_	et:				
		Nom de l'ingénieur du proj	Nom			Prénom	
	b.	Firme (ou consortium) d'in	génierie :				

FICHE - PROJET DEVELOPPEMENT DURABLE

	c.	Nom de l'architect	e du projet :				
			1 3	Nom		Prénom	
	d.	Firme (ou consort	ium) d'architec	cture:			
6.	Inform	nations techniques					
	a.	Description somm	aire des travau	x: (ex.: Restaur	ation complète, rei	nplacement des	systèmes mécaniques)
	b.	Nomes et guides d	e l'ASHRAE ε	appliquées: Sé	lectionnez		
		ASHRAE 90.1	□ oui	\square non			
		ASHRAE 62.1	□ oui	□ non			
		ASHRAE 55	□ oui	□ non			
		Y a-t-il eu une mis	e en service ?	□ oui	□ non		
		Autre(s) norme(s)	et/ou guide(s)	de l'ASHRAE	appliqué(s)? P	récisez:	
7.	Autre	s considérations :					
		Une simulation énd	ergétique a-t-el	lle été effectué	e ?	□ oui	□ non
		Quelle est la conso	mmation énerg	gétique avant l	es travaux?		MJ/m ²
		Quelle est la conso	mmation énerg	gétique selon l	es simulations?		MJ/m ²
		Quelle est la conso	mmation énerg	gétique réelle a	après les travaux	κ?	MJ/m^2
		Quelle est la réductio	n des émissions o	des gaz à effet d	e serre équivalente	e *1 ?	CO2 total équivalent
8.	Inind	re au formulaire ei	ntre 2 et 10 nh	otos identifiá	es du nroiet en	format IPF	G ou PNG (av salla
0.	o omu	i e au ivi mulant e ci	ine a crite bu	ows identifie	w aa projet en	Tormat at E	J ULL I TO (CA Saile

ou système mécanique, bâtiment, installation)

^{*1} basé sur l'Annexe C de *l'INVENTAIRE CANADIEN DES GAZ* À *EFFET DE SERRE*

Coefficients d'émission

Les onze tableaux suivants présentent un résumé de tous les coefficients d'émission (et de leurs sources) utilisés pour calculer les émissions de gaz à effet de serre au Canada, à l'exclusion des émissions qui ont été évaluées par des entreprises ou au moyen d'un modèle numérique.

ÉNERGIE : SOURCES DE TABLEAU C1 COMBUSTION FIXES -COMBUSTIBLES GAZEUX

Combus-		CO2	CH ₄	N ₂ O
tible	Usage	g/m^3 comb.	g/m^3 comb.	g/m^3 comb.
Gaz	Chaudière de			
	centrale électrique	1 880	0,0048	0,02
naturel	Chaudière industrielle	1 880	0,048	0,02
	Chaudière commerciale	1 880	0,043	0,02
	Chaudière domestique			
	Appareil de chauffage	1 880	0,043	0,02
	Autre	1 880	0,043	0,02

g/I HFO* éq. g/I HFO* éq. g/I HFO* éq.

Gaz (de distillation) de

0.00002 raffimage Énergie industrielle 2 000

Coefficients d'émission de CO₂: Natural Gas - Marland et Rotty, 1983, Refinery Fuel Gas - ibid.

Coefficients d'émission de CH₄: Natural Gas – U.S. EPA, 1985.

Coefficients d'émission de N₂O : All – Association canadienne de l'électricité/CANMET, 1993; U.S. EPA, 1989.

TABLEAU C2 ÉNERGIE: SOURCES DE COMBUSTION FIXES – COMBUSTIBLES LIQUIDES DU PÉTROLE

Combus-		CO2	CH₄	N_2O
tible	Usage	g / I comb.	g / I comb.	g / I comb.
Pétrole léger	Chaudière de centrale électrique	2 830	0,006	0,013
(distillat)	Chaudière industrielle	2 830	0,006	0,013
	Chaudière commerciale	2 830	0,026	0,013
	Chaudière domestique	2 830	0,214	0,006
	Autre	2 830	0,026	0,013
Pétrole lourd	Chaudière de centrale électrique	3 090	0,03	0,013
(résiduaire)	Chaudière industrielle	3 090	0,12	0,013
	Chaudière commerciale	3 090	0,06	0,013
	Autre	3 090	0,06	0,013
Diesel	Moteur d'entraînement	2 730	0,26	0,40
Liquides	Propane : énergie	1 530	0,03	-
du gaz	Butane: énergie	1 760	0,03	-
naturel	Éthane : énergie	1 110	0,03	-

ÉNERGIE: SOURCES DE TABLEAU C3 COMBUSTION FIXES - COMBUSTIBLES SOLIDES DU PÉTROLE

Combus-		CO2	CH ₄	N ₂ O		
tible	Usage	g / I comb.	g / I comb.	g / I comb.		
Liquide dérivé du coke de pétrole	Énergie, applications du coke	4 200	0,12	-		
Coke de pétrole du cracker catalytique	Énergie, applications du coke	3 800	=	=		
Bibliographie : Coefficients d'émission de CO ₂ :	Coefficients Distillants légers et lourds, diesel – Jaques, 1992, Liquides du					
Coefficients d'émission de CH ₄ :	1985 (arrondisse	ment appliqué pétrole lourd).	ides du gaz nature aux chaudières co Diesel – U.S. EPA	ommerciales qui		
Coefficients d'émission de N ₂ O :			nt et De Soete, 19 istillates – U.S. EF			

TABLEAU C4 ÉNERGIE: SOURCES DE COMBUSTION FIXES - COMBUSTIBLES DE HOUILLE, PARTIE 1

Emplacement	Type de charbon	Usage	${ m CO}_2$ g / kg comb.
Nouveau- Brunswick	Forte volatilité Bitumineux	Énergie électrique Production d'électricité	2 230
Nouvelle- Écosse	Forte volatilité Bitumineux	Énergie électrique Production d'électricité	2 300
Québec	ÉU., volatilité moy. Bitumineux Anthracite	Énergie électrique Production d'électricité Énergie électrique Production d'électricité	2 500 2 390
Ontario	Lignite Volatilité faible	Énergie électrique Production d'électricité Énergie électrique	1 490
	Bitumineux ÉU., volatilité moy.	Production d'électricité Énergie électrique	2 520
	Bitumineux ÉU., volatilité moy. Bitumineux	Production d'électricité Aciéries intégrées	2 500 2 460
Manitoba	Lignite Volatilité faible	Énergie électrique Production d'électricité Énergie électrique	1 520
	Bitumineux	Production d'électricité	2 520
Saskatchewan	Lignite	Énergie électrique Production d'électricité	1 340
Alberta	Sous-bitumineux	Énergie électrique Production d'électricité	1 740
	Volatilité faible Bitumineux	Énergie électrique Production d'électricité	1 700
Colombe- Britannique	Volatilité faible Bitumineux	Énergie électrique Production d'électricité	1 700
Canada	Coke	Combustion générale Quand la production de coke a lieu hors site	2 480

^{*}ML = Équivalent du mazout lourd (en termes énergétiques) Bibliographie:

ÉNERGIE: SOURCES DE TABLEAU C5 COMBUSTION FIXES - COMBUSTIBLES DE HOUILLE, PARTIE 2

Usage (tous les types de charbon, toutes les provinces)	CH_4 $g / kg comb.$	N_2O g / kg comb.
Chaudières de centrale électrique classiques Systèmes de combustion à lit fluidisé Chaudières industrielles classiques Systèmes commerciaux et autres systèmes de chauffage	0,015 0,015 0.015	0,05 2,11 0,11

Bibliographie

Coefficients d'émission de CO₂ : Jaques, 1992; Lauer, 1991.

Coefficients d'émission de CH₄: U.S. EPA, 1995 (moyenne).
Coefficients d'émission de N₂O : Association canadienne d'électricité/CANMET, 1990;

U.S. EPA, 1989.

TABLEAU C6a ÉNERGIE: TRANSPORTS -SOURCES TERRESTRES NON FERROVIAIRES

Carburant	Usage	CO_2 g / I comb.	${ m CH_4} \\ { m g/Icomb.}$	N_2O g / I comb
	Transport routier			
Essence	Automobiles à essence			
à moteur	Convertisseur catalytique perfectionné à trois voies (niveau 0)	2 360	0,25	0,21
	Convertisseur catalytique primitif à trois voies (niveau 1, neuf)	2 360	0,32	0,25
	Convertisseur catalytique primitif à trois voies (niveau 1, usagé)	2 360	0,32	0,58
	Catalyseur d'oxydation	2 360	0,42	0,20
	Système non catalytique	2 360	0,52	0,046
	Camions légers à essence			
	Convertisseur catalytique perfectionné à trois voies	2 360	0,19	0,39
	Convertisseur catalytique primitif à trois voies (neuf)	2 360	0,41	0,45
	Convertisseur catalytique primitif à trois voies (usagé)	2 360	0,41	1,00
	Catalyseur d'oxydation	2 360	0,44	0,20
	Système non catalytique	2 360	0,29	0,046
	Véhicules utilitaires lourds à essence)		
	Convertisseur catalytique à trois voies	2 360	0,17	1,00
	Système dépolluant non catalytique	2 360	0,29	0,046
	Aucun système dépolluant	2 360	0,49	0,046
	Motocyclettes			
	Système dépolluant non catalytique Aucun système dépolluant	2 360 2 360	1,4 2,3	0,046 0,046
Carburant	Automobiles à moteur diesel			
diesel	Système dépolluant perfectionné Système dépolluant	2 730	0,05	0,1
	d'efficacité moyenne	2 730	0,07	0,1
	Aucun système dépolluant	2 730	0,10	0,1
	Camions légers			
	Système dépolluant perfectionné Système dépolluant	2 730	0,07	0,1
	d'efficacité moyenne	2 730	0,07	0,1
	Aucun système dépolluant	2 730	0,07	0,1
	Véhicules utilitaires lourds			
	Système dépolluant perfectionné	2 730	0,12	0,1
	Système dépolluant d'efficacité moyenne	2 730	0,13	0,1
	Aucun système dépolluant	2 730	0,15	0,1
Gaz naturel	Véhicules au gaz naturel	2	0,022	0,00006
Propane	Autres véhicules alimentés au diesel	1 530	0,70	0,09
	Véhicules tout-terrain			
Essence	Autres véhicules à essence	2 360	3	0,06
Diesel	Autres véhicules à moteur diesel	2 730	0,14	1,1

ÉNERGIE: TRANSPORTS -TABLEAU C6b SOURCES FERROVIAIRES ET NON TERRESTRES

Carburant	Usage	CO_2 g / I comb.	CH_4 g/I comb.	N ₂ O g / I comb.
	Transport ferroviair	re ·		
Diesel	Trains	2 730	0,15	1,1
	Transport maritime			
Essence	Bateaux	2 360	1,3	0,06
Diesel	Navires	2 730	0,15	1,00
Pétrole léger				
(distillat)	Navires	2 830	0,3	0,07
Pétrole lourd				
(résiduaire)	Navires	3 090	0,3	0,08
	Transport aérien			
Aviation (essence)	Aéronef classique	2 330	2,19	0,23
Aviation (turbo)	Jet	2 550	0,08	0,25

Bibliographie

Coefficients d'émission de CO₂

Jaques 1992. Propane: Propane: Derivation assuming pure fuel, 100% oxidation.

Coefficients d'émission de CH₄ Véhicules routiers

Natural Gas. Propage - Based on U.S. uncontrolled vehicles: Gasoline and Diesel - average values used: All CH₄ Values for Road Vehicles - GIEC/OCDE/AIE,

Véhicules tout-terrain terrestres non ferroviaires

1997. Andrias et al. (1994), conformément à GIEC/OCDE/ AIE,1997; densité des combustibles - Statistique

Transport ferroviaire (diesel)

Canada, 57-003. Andrias et al. (1994), conformément à GIEC/OCDE/ AIE, 1997; densité des combustibles - Statistique

Transport maritime

Gasoline and Diesel - Andrias et al, 1994. Conformément à GIEC/OCDE/AIE, 1997; densité des combustibles - Statistique Canada, 57-003; Mazouts légeres et lourds - Classification de la Lloyd, 1995, conformément à GIEC/OCDE/AIE, 1996; densité des combustibles - Statistique Canada 57-003; HHV to LHV conversion - GIEC/OCDE/AIE, 1997.

Transport aérien

Véhicules routiers au diesel

U.S. EPA (1985), NAPAA (1987), OCDE, 1991. Density Information - Institute of Petroleum, 1973; Perry et Chilton, 1973; Jaques, 1992.

Coefficients d'émission de N₂O

Véhicules routiers à essence

Tier 1 LDGA & LDGT - H. Michaels, 1998. Tier 0 LDGA & LDGT - Barton & Simpson, 1994; Ratio aged to new - DeSoete, 1989. Oxidation & Non-Catalyst LDGA and LDGT - H. Michaels, 1998; HDGV, Three-Way Catalyst - Barton and Simpson, 1994; HDGV, Non Catalytic and Uncontrolled -H. Michaels, 1998; Motorcycles - H. Michaels, 1998.

LDDT, - Dietzman et al, 1980 et De Soete, 1989. Fuel efficiencies conversions - U.S. EPA élaboré par Engine, Fuel and Emissions Engineering Inc., 1996. LDDA, HDDV - on présume des valeurs identiques à celles des LDDT.

Heath, et al., CERI, 1996.

Véhicules coutiers au gaz naturel et aux propane Véhicules terrestres

tout-terrain (transport non ferroviaire) Transport par rail (diesel)

Andrias et al., 1994. Conformément à GIEC/OCDE/AIE, 1997; densité des combustibles -Statistique Canada, 57-003, Bulletin trimestriel.

Andrias et al, 1994. Conformément à GIEC/OCDE/AIE, 1997; densité des combustibles -Statistique Canada, 57-003, Bulletin trimestriel.

Gasoline and Diesel - Andrias et al, 1994, conformément à GIEC/OCDE/AIE, 1997; densité des combustibles - Statistique Canada, 57-003, Bulletin trimestriel; Mazouts légeres et lourds - Lloyd's Register, 1995, conformément à GIEC/OCDE/AIE, 1997; densité des combustibles - Statistique Canada, 57-003, Bulletin trimestriel; HHV to LHV conversion -GIEC/OCDE/AIE, 1997.

Transport aérien

Transport maritime

De Soete, 1989; Prigent et De Soete, 1989; Pringent et al. 1991. Density Information - Institute of Petroleum, 1973, Perry et Chilton, 1973; au sens de Jagues, 1992.

112

TABLEAU C7 SOURCES DES PROCÉDÉS INDUSTRIELS

Source	Description	CO ₂ g / kg prod. utilisé	N ₂ O	CF ₄	C ₂ F ₆
Utilisation de m	inéraux				
Utilisation de calcaire	Dans le fer et l'acier, le verre, la production de métal non ferreux				
Utilisation de bicarbonate de	Dans la fabrication du verre	440	-	-	-
soude		415	-	-	-
		g/	kg de p	roduit	
Produits minéra	iux				
Production	Calcination				
de ciment	du calcaire	500	-	-	-
Production de	Calcination				
chaux	du calcaire	790	-	-	-
Industrie chimic Production	que				
d'ammoniac	Du gaz naturel	1 600	-	-	-
Fabrique de mé	tal				
primaire	Électrolyse	(1,54-1,83)	- ((0,3-1,1) (0,02-0,1)

Bibliographie:

Coefficients d'émission de CO2 :

Limestone Use – ORTECH, 1994, Soda Ash Use – DOE/AIE, 1993; Lime Production – ORTECH, 1991, Cement Production – Orchard, 1973; Jaques, 1992, Ammonia Production – Industrial Chemicals, 1980; Jaques, 1992; Primary Aluminum – ORTECH, 1994 (les coefficients d'émission varient selon la technique utilisée).

Coefficients d'émission de CH₄ :

Adipic Acid Production - Thiemens et Trogler, 1991.

Coefficients d'émission de N₂O :

Primary Aluminum Production – Unisearch Associates, 1994, adapté par Environnement Canada; les coefficients d'émission varient selon la technique utilisée.

TABLEAU C8 PRODUITS NON-ÉNERGÉTIQUES À BASE D'HYDROCARBURES

Description	CO ₂ g/I
Utilisation d'éthane	222
Utilisation de butane	352
Utilisation de propane	306
Utilisation d'un distillat pétrochimique pour les matières premières	500
Naphte utilisé pour divers produits	625
Pétrole utilisé pour les lubrifiants	1 410
Pétrole utilisé pour d'autres produits	1 450
	t/m³
Utilisation du gaz naturel pour les produits chimiques	1 260

Bibliographie:

Coefficients d'émission de CO₂: GIEC/OCDE/AIE, 1997

TABLEAU C9 SOURCES D'ÉMISSIONS DES SOLVANTS ET AUTRES PRODUITS

Produit	Application	CO ₂ g / capita	CH ₄ g / capita	N ₂ O g / capita
Utilisation	Usage comme anesthésiqu	ie -	-	46,2
d'oxyde nitreux	Usage comme agent propu	ılseur -	-	2,38

Bibliographie

 ${
m N_2O}$ Emission Factors: Anaesthetic Usage – Fettes, 1994.

TABLEAU C10 COEFFICIENTS D'ÉMISSION ET DE SÉQUESTRATION DE LA BIOMASSE

Source/Puits	Description	CO_2 g / kg comb.	CH ₄ g / kg comb	N ₂ O g / kg comb
Combustibles du bois Déchets du bois	Combustion industrielle	1 500	0,15	0,16
Feux d'origine naturelle	Combustion à l'air libre	1 630	3,0	0,24
Feux dirigés	Combustion à l'air libre	1 620	6,2	0,25
Liqueur résiduaire	Combustion industrielle	1 500	-	-
Poêles et foyers Poêles classiques Foyers classiques	Combustion résidentielle Combustion résidentielle	1 500 1 500	15 15	0,16
Foyers avec unité encastrée (système antipollu non catalytique)	Combustion résidentielle ution	1 500	8	0,16
Foyers avec unité encastrée (système antipollu catalytique)	Combustion résidentielle ution	1 500	5,8	0,16
Autre équipement de combustion du bois	Combustion résidentielle	1 500	15	0,16

Remarque: Les émissions de CO₂ de diverses sources de biomasse ne sont pas incluses dans les totaux d'inventaire. Les émissions pour le CH₄ et le N₂O sont inventoriées sous la rubrique Énergie, sauf pour les feux d'origine naturelle et les brûlages dirigés qui sont signalés sous la rubrique Changement d'affectation des terres et foresterie.

Bibliographie:

Coefficients d'émission de CO₂ :

Wood Fuel/Wood Waste - U.S. EPA (1996); Accidental Forest Fires and Prescribed Burns - Taylor (1996).

Coefficients d'émission de CH₄ :

Wood Fuel/Wood Waste – U.S. EPA (1996); Accidental Forest Fires and Prescribed Burns – Taylor (1996).

Coefficients d'émission de N₂O :

Wood Fuel/Wood Waste - Rosland et Steen (1990); Radke et al. (1991); Accidental Forest Fires and Prescribed Burns – Taylor (1996).

Bibliographie

Association canadienne d'électricité/CANMET. Final Draft of Report Measuring Emissions from Canadian Utilities, 1990.

Barton P., Simpson, J. *The Effects of Aged Catalysts and Cold Ambient Temperatures on Nitrous Oxide Emissions*, rapport MSED no 94-21 (non publié), Environnement Canada, 1995.

Department of Energy/Energy Information Administration (DOE/AIE), Emissions of Greenhouse Gases in the United States, 1985-1990, Report number DOE/AIE - 0573, Energy Information Administration, Washington, 1993.

De Soete, G. *Updated Evaluation of Nitrous Oxide Emissions from Industrial Fossil Fuel Combustion*, ébauche du rapport final préparé pour la Communauté européenne de l'énergie atomique, Institut français du pétrole, réf. 37-559, 1989.

Dietsmann, H.E., Parness M.A. et Bradow, R.L. *Emissions* from *Trucks by Chassis Version of 1983 Transient Procedure*. SAE Paper 801371, 1980.

Fettes, E. Communication entre Senes Consultants et Puritan-Bennett, février 1994.Heath, M.D., Golosinski, C., Raggett, D. et Quinn, D. Alternative Transportation Fuels in Canada: Prospects and Policies, Canadian Energy Research Institute, Calgary, 1996.

GIEC/OCDE/AIE (1997). Lignes directrices du GIEC pour les inventaires nationaux de gaz à effet de serre, version révisée 1996, GIEC, Londres, R.-U., 1997.

Institute of Petroleum, Grande-Bretagne. *Modern Petroleum Technology*, Fourth Edition, G.B. Hobson et W. Pohl, (dir.), Applied Science Publishers, Barking, R.-U., 1973.

Jaques, A.P. Estimation des émissions provoquant l'effet de serre au Canada en 1990, Rapport SPE 5/AP/4, décembre 1992.

Lauer, E. *Memorandum to Ad Hoc Committee on Emission Factors*, Énergie, Mines et Ressources, Ottawa, 1990.

Marland, G. et Rotty, R.M. Carbon Dioxide Emissions from Fossil Fuels: A Procedure for Estimation and Results for 1951-1981, Carbon Dioxide Research Division, Office of Energy Research, U.S. Department of Energy, Oak Ridge, Tennessee, DOE/NBB-0036 TR-003, 1983.

Michaels, H. *Emissions of Nitrous Oxide from Highway Mobile Sources - Comments on the Draft Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-1996* (mars 1998); United States Environmental Protection Agency, Office of Mobile Sources, EPA420-R-98-009, août 1998.

OCDE. Estimation of Greenhouse Gas Emissions and Sinks, rapport final de l'OCDE, Paris, 1991.

Orchard, D.F. *Concrete Technology*, vol. 1, Applied Science Publishers Ltd., Londres (R.-U.), 1973.

ORTECH International, 1994. *Inventory Methods Manual for Estimating Canadian Emissions of Greenhouse Gases*, rapport préparé pour Environnement Canada, Division des émissions de gaz à effet de serre, Ottawa, 1994.

ORTECH International. *Compilation of an Ontario Gridded Carbon Dioxide and Nitrous Oxide Emission Inventory*, rapport P-91-50-6436/OG, préparé pour le ministère de l'Environnement de l'Ontario, 1991.

Perry, R.H. et Chilton, C.H. *Chemical Engineer's Handbook*, cinquième édition, McGraw-Hill, New York, 1973.

Prigent, M. et De Soete, G. Nitrous Oxide (N_2O) in Engine Exhaust Gases – A First Appraisal of Catalyst Impact, Society of Automotive Engineers, Technical Paper Series 890492, 1989.

Prigent, M., De Soete, G. et Doziere, R. "The Effect of Aging On Nitrous Oxide (N₂O) Formation by Automotive Three-Way Catalysts", dans *Catalysis and Automotive Pollution Control*, vol. II, Elsevier Science Publishers, Armsterdam, Pays-Bas, 1991.

Radke, L.F., D.A. Hegg, P.V. Hobbs, J.D. Nance, J.H. Lyons, K.K. Laursen, R.E. Weiss, P.J. Riggan et D.E. Ward. "Particulate and Trace Gas Emissions from Large Biomass Fires in North America", dans *Global Biomass Burning: Atmospheric Climatic and Biospheric Implications*, J.S. Levine (dir.), Massachussetts Institute of Technology, Cambridge, Massachussett, 1991.

Rosland, A. et Steen, M. *Klimgass-Regnshap For Norge*, Statens Forurensningstilsyn, Olso, Norvège, 1990.

Statistique Canada. *Bulletin trimestriel-disponibilité et écoulement d'énergie au Canada*, publication n° 57-003, Gouvernement du Canada, Ottawa, 1990-1995.

Taylor, S.W. et K.L. Sherman, 1996. *Biomass Consumption and Smoke Emissions from Contemporary and Prehistoric Wildland Fires and British Columbia*, rapport no 249 préparé par le Service canadien des forêts, Centre de foresterie du Pacifique, dans le cadre de l'EMVRF, mars 1996.

Thiemens, M.C. et Trogler, U.C. "Nylon Production: an Unknown Source of Atmospheric Nitrous Oxide" dans *Science*, 251, p. 932-934, 1991.

Unisearch Associates. Measurements of CF_4 and C_2F_6 in the Emissions from Canadian Aluminum Smelters by Tunable Diode Absorption Lase Spectroscopy, rapport à la Canadian Aluminum Association, avril 1994. Également présenté à l'atelier sur les hydrocarbures perfluorés, Londres, mars 1994.

U.S. EPA. *Compilation of Air Pollutant Emission Factors, volume 1, Stationary Point and Area Sources*, U.S. Environmental Protection Agency, AP42, 4e édition, 1985

U.S. EPA. *Compilation of Air Pollutant Emission Factors, vol. 1, Stationary Point and Area Sources*, U.S. Environmental Protection Agency, AP-42, cinquième édition, « Supplément B », janvier 1996.

U.S. EPA, EPA/IPF. European Workshop on the Emission of Nitrous Oxide from Fuel Combustion (Rueil-Malmaison, France), préparé par Air and Energy Engineering Research, Research Triangle Park, Raleigh, Caroline du Nord, rapport n° EPA-600/9-89-089, 1989.

U.S. EPA. National Acidic Precipitation and Assessment Program (NAPAP). *Criteria Pollutant Emission Factors for the 1985 NAPAP Emissions Inventory*, EPA/600/7-87/015, 1987.

W.L. Faith, D.B. Keyes et R.L. Clark (dir.). "Industrial Chemicals", 3^e édition, Wiley and Sons, New York, 1980.